Senior Data Scientist (MLOps)

City of London
9 months ago
Applications closed

Related Jobs

View all jobs

Junior / Graduate Data Scientist

Lead Data & AI Scientist

Senior Machine Learning Engineer

AI Solutions Manager

Lead Data Engineer

Senior Software Engineer (C++ / Unreal Engine)

A world class Tech Organisation are looking for a Senior Data Scientist (MLOps) to join their division in London on a hybrid basis - opportunity to join a really innovative environment where you'll work with cutting edge technologies.

The company:

The organisation have been running very successfully now for over twenty years and are recognised as market leaders in their sector. They have a global footprint, and their products are used by millions of users every single day.

They are entering a really exciting period of growth, and are recruiting for a number of new positions to the business as they've got pretty big plans for the next few years - so it's genuinely a great time to join.

They thrive on a positive and welcoming culture making it a great place to work, so it probably comes as no surprise that they have really low attrition rates, as so many of their staff members have long and successful careers with the business.

The role:

You'll be joining a multi-disciplinary Senior squad of roughly 6 consisting of Principle and Senior Software Engineers, Data Engineers and Data Scientists, and will be tasked with supporting machine learning teams with deploying and maintaining models in production, ensuring they are reliable, scalable, and adhere to best practices.

You'll be involved optimizing model performance, mitigating risks, and refining deployment pipelines to meet governance and regulatory standards. You will collaborate with the ML platform team advocating for effective use of tools like feature stores and model registries.

This role acts as the glue between data science and platform engineering teams, fostering MLOps best practices, addressing bottlenecks in inference and retraining pipelines, and resolving production issues to enhance system robustness and cost efficiency.

Key skills and experience:

** Prior Senior Data Scientist with Machine Learning experience

** Strong understanding and experience with ML models and ML observability tools

** Strong Python and SQL experience

** Spark / Apache Airflow

** ML frame work experience (PyTorch / TensorFlow / Scikit-Learn)

** Experience with cloud platforms (preferably AWS)

** Experience with containerisation technologies

Useful information:

Their offices are based in central London where they support hybrid working, you'll be expected onsite about twice a week, however they are really flexible about what days.

They're offering a very competitive salary from £70,000 - £95,000, depending on experience with great benefits to match (which include multiple bonuses and more!).

If you're keen to find out more, please reach out to Matthew MacAlpine at Cathcart Technology

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Robotics Tools Do You Need to Know to Get a Robotics Job?

If you’re pursuing a career in robotics, it can feel like the list of tools you should learn never ends. One job advert asks for ROS, another mentions Gazebo, another wants experience with Python, Linux, C++, RobotStudio, MATLAB/Simulink, perception stacks, control frameworks, real-time OS, vision libraries — and that’s just scratching the surface. With so many frameworks, languages and platforms, it’s no wonder robotics job seekers feel overwhelmed. But here’s the honest truth most recruiters won’t say explicitly: 👉 They don’t hire you because you know every tool — they hire you because you can apply the right tools to solve real robotics problems reliably and explain your reasoning clearly. Tools matter — but only in service of outcomes. So the real question isn’t how many tools you should know, but which tools you should master and why. For most robotics roles, the answer is significantly fewer — and far more focused — than you might assume. This article breaks down what employers really expect, which tools are core, which are role-specific, and how to focus your learning so you look capable, confident, and ready to contribute from day one.

What Hiring Managers Look for First in Robotics Job Applications (UK Guide)

Robotics is one of the most dynamic, interdisciplinary fields in technology — blending mechanical systems, embedded software, controls, perception (AI/vision), modelling, simulation and systems integration. Hiring managers in this space are highly selective because robotics teams need people who can solve real-world problems under constraints, work across disciplines, and deliver safe, reliable systems. And here’s the reality: hiring managers do not read every word of your CV. Like in many tech domains, they scan quickly — often forming a judgement in the first 10–20 seconds. In robotics, those first signals are especially important because the work is complex and there’s a wide range of candidate backgrounds. This guide unpacks exactly what hiring managers look for first in robotics applications and how to optimise your CV, portfolio and cover letter so you stand out in the UK market.

The Skills Gap in Robotics Jobs: What Universities Aren’t Teaching

Robotics is no longer confined to science fiction or isolated research labs. Today, robots perform critical tasks across manufacturing, healthcare, logistics, agriculture, defence, hospitality and even education. In the UK, businesses are embracing automation to improve productivity, reduce costs and tackle labour shortages. Yet despite strong interest and a growing number of university programmes in robotics, many employers report a persistent problem: graduates are not job-ready for real-world robotics roles. This is not a question of intelligence or dedication. It is a widening skills gap between what universities teach and what employers actually need in robotics jobs. In this article, we’ll explore that gap in depth — what universities do well, where their programmes often fall short, why the disconnect exists, what employers really want, and how you can bridge the divide to build a thriving career in robotics.